MATH6031 Lecture 9

SYZ mirror symmetry w/ Corrections I X : Kähler (X,D) D : effective anticononical divisor L/ simple normal crossings Rmk: The complement XID is called a log Calabi-Yan variety. (X, D) is mirror to the London-Ginzburg (LG) model $(\check{\mathsf{X}},\mathsf{W})$ s.t. . X is the semi-flat minor to XD: $\begin{array}{c} \times > \times \ D = \tau^* B_{\bullet} / \Lambda^{\circ} \\ \hline \pi \\ \end{array}$ $\{(L,\nabla)\}/(B \supset B = B \setminus \partial B$ · W: X -) I is the Lagrangian Floer potentiel defined by $m_{o}(L,\nabla) = W(L,\nabla)[L]$ obstruction chain for (1,7) in X Toric examples Consider a toric Kähler manifold $(X = X_{\Sigma} = X_{\Delta}, \omega, J)$ fan relytope prime driker The moment map The X" D = toric = Di π $\Delta \supset 2\Delta$ is a Legranizan toms fibration, u/ fibers collepsing

 $-\log(\Delta)$ where $L_{og} : (\mathbb{T}^{*})^{n} \longrightarrow \mathbb{R}^{n}$ $(\log |z_{1}|, ..., |o_{g}|z_{n}))$ $X \setminus D = X, \qquad X \subset TM_{R}/M = (\mathbb{C})^{n}$ $\Delta^{\circ} \subset M_{R} = |R^{\circ}|$ /L.J e.j. For X = |P'|× = × = ()) $W = 2 + \frac{2}{2}$ Thm (Cho-Oh 2005) If X is Fano, i.e. c. (X)>0, then $n_{\beta} = \begin{cases} 1 & \text{if } \beta = \beta \text{i is basic} \\ 0 & \text{otherwise} \end{cases} \qquad e^{-\int_{\beta} \omega} h_{oly}(\partial \rho) \\ m = 2 & \text{recall that} \end{cases}$ Rink: The result of Cho-oh $(ev_{o})_{*}([\mathcal{M}_{i}(L,\beta)]^{r})$ Venties a prediction by $= n_{p} \cdot [L]$ physicists (Hori-Vata). 6 For $X = IP^2$, $\Delta =$ $X = T\Delta^{\circ}/M \subset (C^{\circ})^{n} \xrightarrow{D_{1}} v^{*}$ $= T\Delta^{\circ}/M \subset (C^{\circ})^{n} \xrightarrow{D_{2}} v^{*}$ $= D_{2}$ $= D_{2}$ $= \int (T + p \in \{p_{1}, p_{2}, p_{3}\})$ $= \int (D + p_{3}) = \int (D + p_{3}) e^{-p_{3}}$ $= \int (D + p_{3}) e^{-p_{3}}$ $= \int (D + p_{3}) e^{-p_{3}}$ $\Rightarrow W = Z_{\beta_1} + Z_{\beta_2} + Z_{\beta_3} = Z_1 + Z_2 + \frac{1}{Z_2}$

 $\implies \mathcal{W} = \mathcal{Z}_{\beta_1} + \mathcal{Z}_{\beta_2} + \mathcal{Z}_{\beta_3} = \mathcal{Z}_1 + \mathcal{Z}_2 + \frac{\mathcal{Z}_1}{\mathcal{Z}_1 \mathcal{Z}_2}$ The ison. $QH^{\dagger}(IP^{2}) \cong Jac(W)$ can be explained tropically by β₁ β₂ β₂ β₂ β₂ γesponsible for the holomorphic guentime Crr. sphere This can be generalized to big quantum chandogy (M. Gross 2009) But if X is non-Fano, W has to be corrected by bubbled configurations which involves higher Mesler indices disks y and sphere components: W = Wo + corr. terns $\sum_{i=1}^{\infty} Z_{\beta_i}$ In partimlar, if X is semi-Fano, i.e. C.(X) >0, then only bubbled configurations with sphere bubbles will contribute $\implies W = \sum_{i=1}^{m} (1 + S_i(q)) Z_{p_i} = W_q + C_{r_i} terms$ where 1+ S; (g) is a generating function of genus 0, 1-pointed open Gromov-Witten inversents of (X, D)

1-pointed open Gromov-Witten invariants of (X,D). e.j. For $X = F_2$ (Hirzebruch surface) $= P\left(O_{p} \circ O(2)\right)$ D_2 $W = Z_1 + Z_2 + \frac{2\cdot Z_2^2}{Z_1 - Z_2^2} + (1 + Q_1) \frac{Z_2}{Z_2}$ D_3 F_4 = W_o + $q_1 \cdot \frac{q_2}{z_2}$ q_1 (Auroux, FODD, ...) Rink SYZ transtom : $f_{sy2}(e^{i(\omega+\frac{1}{2})}) = e^{i(\omega+\frac{1}{2})}$ SYZ w/ Corrections I Setting: (X, D) X: Kihler DCX : effective anticanial dissor W snc. S.T. D I a Lagr toms fibration $\begin{array}{c} D \subset \times \\ 1 & 1^{\pi} \\ \partial B \subset B \end{array}$ possibly w/ singular filers over B/2B. (i.e. B is an affine mtd w/ singularities and (2) Maslor class $\mu(L_b)$ of smooth files over B(3B) venish. Let I CB/2B be the discriminant locus. R - (plac) T

Let I' CB/2B be the discriminant (ours. $B_{o} := (B \setminus \partial B) \setminus T \qquad \qquad \times c \times \setminus D \supset D$ $X_{\bullet} := \pi^{-}(B_{\bullet})$ $\int \pi$ Then we arguin have $T^*B_0/\Lambda^{\vee} = X_0$ $K_0 := TB_0/\Lambda$ $K_0 := TB_0/\Lambda$ The issue is that, since we've deleted the singular files in XID, we shall (partially) compactify to get the Grrect mirror mentfold. Problem: (The natural complex structure Jo on X. Connot be extended to any partial compactification of X. because monodromy at the affine str. on Bo is nontrivial around I. SYZ: deform Jo by instantion corrections coming from folom. disks in X bounded by fibers of Tin turn, these holom disks glue to give holom. spheres in X giving nise to GW inverients of X.

genns 0 GW theory HXD Holon, disks in X y Ldry on files d t mfd 🔀 To construct the mirrory, we can use a trick due to Anronx: instead of deforming Jo, we construct X by modifying the gluing by wall-crossing data = $\sum_{\substack{k \in \pi_{3}(K_{1}) \\ k \neq 0}} \int_{K_{1}} \int_{K_{2}} \int_{K_{2$ over H, and H2 -o W is a multi-valued BIJB Auroux's rden: Floer theory tells us has to correct the mirror so that he becomes single-valued. =) The night Correction is given by requiring W to be a single-valued function. e.g.()(Arroux 2007) $X = \mathbb{Q}^{2}, D = \{xy = 1\}, S = dx \wedge dy$ $(x, y) = \{f = 1\}, w = u_{xx} = -\frac{i}{2}(dx \wedge dx)$ $T_{\sigma} \quad \text{Construct a lagrangian terms fibration a } X,$ Consider the for $f : X \rightarrow \mathbb{C}$ (x,y) ~ xy

• the S' \mathcal{C} × : $e^{i\theta}$ (x,y) = $(e^{i\theta}$ ×, $e^{-i\theta}$ y) Then the map $D \subset X$ (x.y) J TC $\mathbb{R} \times \{\circ\} = \partial B \qquad B := \mathbb{R} \times \mathbb{R}_{\geq 0} \quad (\mu_{s'} = \frac{1}{2} (|x|^2 - |y|^2), |f(x,y) - 1|)$ TT is a Lagrangian toms fibration: a fiber of The is given as follows $\begin{array}{c|c} X & \downarrow \\ f - z \\ \hline \end{array}$ fiber of f-2 over a EC $= \{xy-1 = a\}$ $= \{xy = 1 + \alpha\}$ P sing (=) a=-1 Furthernore, a fiber becomes singular only then it tits a singular fiber of f-z and Msi = 0. This happens only when $|f-1| = ond \mu_{s'} = 0$. =) the only singular pt in B is (0, 1) H H H \mathbb{R} It can be shown that $M = \{ M_{+} = \mathcal{Y} + \mathcal{Y}^{W} \quad \text{over } H_{+} \}$

$$W = \begin{cases} W_{+} = \frac{w}{2} + \frac{w}{2} \quad \text{our } H_{+} \\ W_{-} = \frac{w}{2} \quad \text{our } H_{-} \end{cases}$$
This tills us have to correct the mirror, namely.
Letting $V = \frac{w}{2}'$, we have
 $X_{5Y2} := \{ uv = 1 + uv \} \subset \mathbb{C}^{2} \times \mathbb{C}^{2}$
 $W_{+} = W_{-}$